

This is the documentation for rpi_wordclock

	General considerations
	If you want to build a wordclock

	Hardware setup
	Skeleton setup

	LED setup

	Raspberry Pi setup

	Button setup

	Stancil setup

	Final clock

	Video documentation on the wiring layout

	Software setup
	Set locales

	3rd party dependencies (packages)

	3rd party dependencies (python packages)

	(Optional) dependencies to readout temperature sensor

	3rd party dependencies (git repositories)

	The wordclock software

	Further reading
	Concepts and background

	Expanding the functionality of the wordclock

	Trouble shooting

Further documentation

Two youtube videos, which outline the main functionalities and features are available here [https://www.youtube.com/watch?v=V9TwvranJnY] and here [https://www.youtube.com/watch?v=wcLQDykRBbM].

Indices and tables

	Index

	Module Index

	Search Page

Acknowledgements

	Christian (idea and first efforts for realization)

	Daniel and Markus (technical support and hints to make the project advance)

	Jeremy (providing the great rpi_ws281x-library [https://github.com/jgarff/rpi_ws281x])

General considerations

If you want to build a wordclock

Note

This project is currently still in an experimental state:

	The documentation contains the main steps to build a wordclock, but might not guide you through all steps in greatest detail

	Depending on your language-dependent stencil-layout, you might need to adapt the software.
Feel free to contribute here!
Currently available:

	Stancil layout and software:

	german (including swabian and bavarian: Thanks to Timo and Euchkatzl)

	english (Thanks to Alexandre)

	dutch (Thanks to svenjacobi, resolution is 10x9. Therefore, not all plugins are supported!)

	swiss

	french

	Stancil layout only (requiring some python-implementations: See wordclock_plugins/time_default):

	italian

	spanish

	turkish

	Further languages/stencil layouts can be created using the ‘’config-file’’ and the script ‘’create_layout.py’’

	A final note: Throughout this project, you will assemble electronic components, which can possibly harm you or others (or destroy your hardware).
It’s therefore important, that you know, what you are doing: By assembling this clock, you act on your own risk!

	Hardware requirements:

	A (wooden) sceleton to hold LEDs, stencil, RPi, etc…

	A stencil providing the letters
* Find an overview over the different layouts here: https://github.com/bk1285/rpi_wordclock/tree/master/wordclock_layouts
* You can create them on your own: Special plotters can produce adhesive stencils, which you can glue onto a glas plane.
* Consider, that you might need to invert the layout to have the adhesive surface on top to attach to the glas plate.
* Possible options for ordering a stencil are:

	https://www.ponoko.com/ (thanks to StefanCarton).

	http://www.mikrocontroller.net/articles/Word_Clock (thanks to euchkatzl)

	Further reading:
* http://diskussion.christians-bastel-laden.de/viewforum.php?f=12&sid=b90281d4a392f47503e9b9fc15495b19

	A frame to enframe the wordclock

	Possible materials: Wood, alumnium, etc.

	A LED-strip running at 5V (e.g. WS2812 B Stripe 5m 150 LED)

	Assure, that the spacing of the LEDs on the strip is equal or greater than the spacing of the letters
of your stencil. If the spacing is smaller, you will not be able to get your LEDs into the correct position.

	A Raspberry Pi (e.g. Review B, including SD-card)

	A wifi-dongle to connect your RPi wireless to your local network

	A power supply (e.g. 5V 10A 50W LED Power Supply)

	5V are required. The current, which needs to be provided at max depends on the number and power consumption of you LEDs.

	A user-interface to run the wordclock

	e.g. 3 buttons (each requiring a 1k and a 10k resistor)

	e.g. a capacitive touch sensor

	…

	Some plugs to connect cables to the Raspberry Pis GPIO-pins

	A micro-usb cable to connect the Raspberry Pi to the power supply

	Optional: Hardware for levelshifting as oulined in https://learn.adafruit.com/neopixels-on-raspberry-pi/wiring and http://youtu.be/V9TwvranJnY?t=23m08s

	Optional: A temperature sensor like an AM2302. To connect the sensor, an additial 10k resistor is required.

	You need to setup the software on your own

	Some first documentation available here

	This might require some python programming (to adopt the software to your needs)

	You should be ready to…

	Setup the hardware (glueing, soldering, etc.)

	Consider double connectors, if you want to minimize soldering efforts: https://github.com/bk1285/rpi_wordclock/issues/118

	Setup a Raspberry Pi (raspbian)

	Connect to the RPi via ssh

	Install external dependencies of the wordclock project

	Do some python programming (to adopt the software to your needs)

	Contribute to this project

	by sharing your implementations/improvements/enhancements/… ;)

Hardware setup

Skeleton setup

[image: Drilling]

According to the stencil layout, for each LED a hole needs to be prepared. The total number of 114 holes makes this pretty tedious.

[image: Sawing]

To place the Raspberry Pi within the skeleton, some sawing is required…

LED setup

[image: After Soldering]

After soldering the LED strip, the clock looks like this. The soldering needs to be done according to the wiring layout. E.g. based on 11*10 letters:

[image: Examplary wiring layout (front side)]

Further wiring layouts are available [https://github.com/bk1285/rpi_wordclock/tree/master/wordclock_layouts]. Assure to connect the LED strip in the right direction. Little arrows indicate that along the strip.

Raspberry Pi setup

[image: Software Update]

Before you mount your raspberry inside the clock, install the latest Raspbian, connect it to your local wifi and ensure that you can ssh to it.

Button setup

[image: Components]

At this stage, the displayed components are required for the further setup.

[image: Wiring concept]

Conceptual wiring layout to connect RPi, buttons, etc. See also Power connectors [https://en.wikipedia.org/wiki/Coaxial_power_connector], USB-Pinouts [https://en.wikipedia.org/wiki/USB#Pinouts]

[image: Wiring detail]

The connection of buttons, LED strip and power brings the wordclock close to its final hardware configuration.

[image: Wiring button]

Buttons with attached resistors. The center button has already its final tip.

Stancil setup

[image: Stancil setup 01]

Fixation of 4 screws within the 4 corners of the stancil using two-component adhesive.

[image: Stancil setup 02]

Allows to fix the stancil with screw-nuts to the sceleton.

[image: Stancil setup 03]

To increase stability, consider an overlapping of the frame to hold the major weight of the stancil.

Final clock

[image: Final backside]

Backside of the final wordclock.

[image: Final backside detail]

Closeup of the final wordclock.

Video documentation on the wiring layout

Link to wiring documentation [http://youtu.be/V9TwvranJnY?t=8m43s]

Software setup

Set locales

Since the config-file contains layouts for multiple languages, assure to have a utf-8 compatible locale:

echo $LANG

should return something, containing utf-8 at the end.
E.g.:

en_US.UTF-8

If not, check this website, to adjust it: http://perlgeek.de/en/article/set-up-a-clean-utf8-environment

3rd party dependencies (packages)

To install 3rd party dependencies (packages) enter in a terminal/commandline:

sudo apt-get install python-pip python-scipy scons git swig ttf-freefont

3rd party dependencies (python packages)

Required python dependencies:

	astral (to get moon/sun information)

	feedparser (to get access to latest feeds)

	scipy

	netifaces (to get the ip of the pi)

	pil

	svgwrite (to plot stencil/wiring layouts)

	coloredlogs (to retrieve colored logs)

To install use:

sudo pip install pytz astral feedparser pillow svgwrite freetype-py netifaces monotonic flask-restplus coloredlogs

(Optional) dependencies to readout temperature sensor

To read out an temperature sensor (AM2302), which can additionally be connected to the raspberry via GPIOs, install the according dependencies:

These dependencies are http://www.airspayce.com/mikem/bcm2835/index.html

and:

sudo pip install am2302_rpi

3rd party dependencies (git repositories)

Install 3rd-party dependencies (compiled on your own).

Install rpi_ws281x to your home-directory (to access leds):

cd ~
git clone https://github.com/jgarff/rpi_ws281x.git
cd rpi_ws281x
sudo scons
cd ~/rpi_ws281x/python
sudo python setup.py install

Note

Since this library is continiously updated: A version, which is tested to work with the wordclock is commit 2f9e03c45:
https://github.com/jgarff/rpi_ws281x/tree/2f9e03c45ba0964029204db565ad9d6233b3a1a6

Install pywapi:

cd ~
wget https://launchpad.net/python-weather-api/trunk/0.3.8/+download/pywapi-0.3.8.tar.gz
tar -zxf pywapi-0.3.8.tar.gz
rm pywapi-0.3.8.tar.gz
cd pywapi-0.3.8
sudo python setup.py build
sudo python setup.py install

Further details: https://code.google.com/p/python-weather-api/#Weather.com

The wordclock software

Download software

Clone the wordclock software to the directory ~/rpi_wordclock (to run the actual wordclock):

cd ~
git clone https://github.com/bk1285/rpi_wordclock.git

Adopt software

To adjust the wordclock to your own settings, create and edit the file ~/rpi_wordclock/wordclock_config/wordclock_config.cfg

To start over, you might just copy the file ~/rpi_wordclock/wordclock_config/wordclock_config.example.cfg and adopt this file.

Note: Each plugin of the wordclock project has its own section in the config-file (create it, if needed, but not existant)

Note

If your wordclock has a stencil layout or display resolution, which is not supported yet, you might need to adopt the
software by providing your own wiring-class (to the file wordclock_tools/wiring.py)

Run software

To run the wordclock software (with adapted wiring and config-file) do:

cd ~/rpi_wordclock
sudo python wordclock.py

In case, the whole thing is not working as expected: Maybe the section trouble-shooting might help…

Make software run on every startup

Add the python-script to crontab by calling the command:

sudo crontab -e

Add here:

@reboot sudo python /home/pi/rpi_wordclock/wordclock.py

Access the wordclock via webinterface

Visit the wordclocks webinterface by entering the wordclocks IP to your browers address bar.

Further reading

Concepts and background

	WCA (Word Clock Array): The center matrix, without minute-LEDs and other stuff

	WCA_WIDTH, WCA_HEIGHT: Height and width of the WCA.

	Part of the wordclock software are png-files, which need to fit to these values.

	Currently available: 11x10 png-files.

	Support for wordclocks with other resolution available (untested).

	WCD (Word Clock Display): Includes any led attached to the wordclock (such as minutes, possible/future ambilights/etc.)

	Coordinates (or: WCA-coordinates): Can be 1d or 2d, used to adress a LED on the word clock array

	Index (or: strip index): Used to adress a LED depending on the position on the LED-strip

Expanding the functionality of the wordclock

Remote control of the wordclock

The wordclock comes with a REST-API to control the major functionality of the clock.

To access the API documentation, visit:

http://wordclock-ip/api

Adding a new plugin

You might be interested in expanding the wordclocks functionality by adding a new
plugin to the wordclock

To do so, you need to…

	Think about the name of this plugin: E.g. new_stuff

	Add a new folder new_stuff to the folder wordclock_plugins

	Create a plugin.py-file with a class plugin, which has at
least the following functions implemented:

	__init__(self, config): You can use the config-object to pass data
from the config-file for initialization purposes

	run(): Run the actual plugin

	For the actual implementation, you can access the provided methods of the class wordclock_display
* If necessary you might extend it… ;)

	Add an icon (with resolution 11x10 pixel) for the new plugin to the
directory wordclock_plugins/new_stuff/icons/11x10/logo.png

	Add optional values to the config-file under the section [plugin_new_stuff]

	Document everything properly, so that others (and maybe you as well) can later understand it… ;)

	Commit your changes using git and consider to create a pull-request at https://www.github.com/bk1285/rpi_wordclock

	Consider, that this repository uses nvie’s branching model: http://nvie.com/posts/a-successful-git-branching-model/

Trouble shooting

Something is not working?

	The command:

sudo pip install pytz astral feedparser pillow svgwrite freetype-py

fails to install properly? If so, try to install further dependencies (thanks to SEBatHome):

sudo apt-get build-dep python-imaging libjpeg8 libjpeg62-dev libfreetype6 libfreetype6-dev

	The leds do not light up as expected?

	It is important to have common ground for LEDs and RPi. Assure, ground is same for all of them (Thanks to euchkatzl).

	Assure to connect the LED strip in the right direction. Little arrows indicate that along the strip (Thanks to euchkatzl).

	Assure correct functionality of leds:

cd ~/rpi_ws281x/python/examples
vim strandtest.py # Set number of leds, pin, etc.
sudo python strandtest.py

The leds should light up now…

	Disable the RPis soundcard (since it might interfere with the PMW-channel, sending data to the LEDs. Thanks to ELViTO12 for reporting):

sudo sh -c "echo blacklist snd_bcm2835 >> /etc/modprobe.d/alsa-blacklist.conf";
sudo reboot;

	In case the LEDs are flickering as shown in this video https://www.youtube.com/watch?v=UHxVS8SkXOU (Thanks to oxivanisher), consider the usage of a level-shifter to connect the GPIO-pin of the raspberry to the LED-strip. Further reading: https://github.com/jgarff/rpi_ws281x/issues/127 https://github.com/bk1285/rpi_wordclock/issues/38

[image: Wiring of the a 74HCT125 level-shifter]

	When starting the wordclock-script, “Pin 17 pressed” is logged all the time?

To get rid of this message, you first need to finish the wordclock setup by attaching all 3 buttons to it.

If you aim to run the wordclock without buttons, change the config-file settings as follows:

[wordclock_interface]
type = gpio_high

Note

The provided information might be completely unsatifying, leaving you here frustrated and annoyed without a working wordclock… :/

However, if you have any issues during the setup, consider:

	To update the provided documentation (or this trouble shooting section), as soon as you resolved your problem.

	To report a software issue here: https://github.com/bk1285/rpi_wordclock/issues

Index

 _images/drilling.jpg

_images/74HCT125_wiring.png
N
~N
i
-
QO
T
<
~

_images/after_soldering.jpg
(m)
mmmumﬁmm
mmm»mmmm

_images/components.jpg
»

OO i
EXQEREX Y
(RAQRQRRREY
(m(vuqu‘
UH(H)(H
’1 (P('()(
(M»m,«
OO

() U(P('([

E\‘.Q@'L

